Characterizing the conformational free-energy landscape of RNA stem-loops using single-molecule field-effect transistors

Author:

Jang Sukjin S.,Dubnik Sarah,Hon Jason,Hellenkamp Björn,Lynall David G.,Shepard Kenneth L.,Nuckolls Colin,Gonzalez Ruben L.ORCID

Abstract

ABSTRACTWe have developed and used high-time-resolution, single-molecule field-effect transistors (smFETs) to characterize the conformational free-energy landscape of RNA stem-loops. Stem-loops are some of the most common RNA structural motifs and serve as building blocks for the formation of more complex RNA structures. Given their prevalence and integral role in RNA folding, the kinetics of stem-loop (un)folding has been extensively characterized using both experimental and computational approaches. Interestingly, these studies have reported vastly disparate timescales of (un)folding, which has been recently interpreted as evidence that (un)folding of even simple stem-loops occurs on a highly rugged conformational energy landscape. Because smFETs do not rely on fluorophore reporters of conformation or on the application of mechanical (un)folding forces, they provide a unique and complementary approach that has allowed us to directly monitor tens of thousands of (un)folding events of individual stem-loops at a 200 μs time resolution. Our results show that under our experimental conditions, stem-loops fold and unfold over a 1-200 ms timescale during which they transition between ensembles of unfolded and folded conformations, the latter of which is composed of at least two sub-populations. The 1-200 ms timescale of (un)folding we observe here indicates that smFETs report on complete (un)folding trajectories in which unfolded conformations of the RNA spend long periods of time wandering the free-energy landscape before sampling one of several misfolded conformations or, alternatively, the natively folded conformation. Our findings demonstrate how the combination of single-molecule sensitivity and high time resolution makes smFETs unique and powerful tools for characterizing the conformational free-energy landscape of RNA and highlight the extremely rugged landscape on which even the simplest RNA structural elements fold.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3