A genetically-defined population in the lateral and ventrolateral periaqueductal gray selectively promotes flight to safety

Author:

La-Vu Mimi,Sethi Ekayana,Maesta-Pereira SandraORCID,Schuette Peter J,Tobias Brooke CORCID,Reis Fernando MCVORCID,Wang Weisheng,Leonard Saskia J,Lin Lilly,Adhikari AvishekORCID

Abstract

AbstractWhen encountering external threats, survival depends on the engagement of appropriate defensive reactions to minimize harm. There are major clinical implications for identifying the neural circuitry and activation patterns that produce such defensive reactions, as maladaptive overactivation of these circuits underlies pathological human anxiety and fear responses. A compelling body of work has linked activation of large glutamatergic neuronal populations in the midbrain periaqueductal gray (PAG) to defensive reactions such as freezing, flight and threat-induced analgesia. These pioneering data have firmly established that the overarching functional organization axis of the PAG is along anatomically-defined columnar boundaries. Accordingly, broad activation of the dorsolateral column induces flight, while activation of the lateral or ventrolateral (l and vl) columns induces freezing. However, the PAG contains a diverse arrangement of cell types that vary in neurochemical profile and location. How these cell types contribute to defensive responses remains largely unknown, indicating that targeting sparse, genetically-defined populations can lead to a deeper understanding of how the PAG generates a wide array of behaviors. Though several prior works showed that broad excitation of the lPAG or vlPAG causes freezing, we found that activation of lateral and ventrolateral PAG (l/vlPAG) cholecystokinin-expressing (cck) cells selectively causes flight to safer regions within an environment. Furthermore, inhibition of l/vlPAG-cck cells reduces avoidance of a predatory threat without altering other defensive behaviors like freezing. Lastly, l/vlPAG-cck activity increases away from threat and during movements towards safer locations. In contrast, activating l/vlPAG cells pan-neuronally promoted freezing and these cells were activated near threat. These data underscore the importance of investigating genetically-identified PAG cells. Using this approach, we found a sparse population of cck-expressing l/vlPAG cells that have distinct and opposing function and neural activation motifs compared to the broader local ensemble defined solely by columnar anatomical boundaries. Thus, in addition to the anatomical columnar architecture of the APG, the molecular identity of PAG cells may confer an additional axis of functional organization, revealing unexplored functional heterogeneity.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3