Understanding immune-driven brain aging by human brain organoid microphysiological analysis platform

Author:

Song Sunghwa,Ao Zheng,Cai Hongwei,Li Xiang,Miao Yifei,Wu Zhuhao,Krzesniak Jonathan,Gu Mingxia,Lee Luke P.,Guo Feng

Abstract

AbstractThe aging of the immune system drives systemic aging and the pathogenesis of age-related diseases. However, a significant knowledge gap remains in understanding immune-driven aging, especially in brain aging, due to the limited current in vitro models of neuro-immune interaction. Here we report the development of a human brain organoid microphysiological analysis platform (MAP) to discover the dynamic process of immune-driven brain aging. We create the organoid MAP by 3D printing that can confine organoid growth and perfuse oxygen and nutrients (and immune cells) to generate standardized human cortical organoids that promote viability, maturation, and commitment to human forebrain identity. Dynamic rocking flow is incorporated for the platform that allows us to perfuse primary monocytes from young (20 to 30-year-old) and aged (>60-year-old) donors and culture human cortical organoids for modeling and analyzing the aged immune cell interacting organoid tissues systematically. We discovered the aged monocytes had increased infiltration and promoted the expression of aging-related markers (e.g., p16 in astrocytes neighboring to monocytes) within human cortical organoids, indicating that aged monocytes may drive brain aging. We believe that our human brain organoid MAP provides promising solutions for basic research and translational applications in aging, neuroimmunological diseases, autoimmune disorders, and cancers.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3