Systematic comparison of ranking aggregation methods for gene lists in experimental results

Author:

Wang BoORCID,Law Andy,Regan Tim,Parkinson Nicholas,Cole Joby,Russell Clark D.,Dockrell David H.,Gutmann Michael U.,Baillie J. KennethORCID

Abstract

AbstractA common experimental output in biomedical science is a list of genes implicated in a given biological process or disease. The results of a group of studies answering the same, or similar, questions can be combined by meta-analysis to find a consensus or a more reliable answer. Ranking aggregation methods can be used to combine gene lists from various sources in meta-analyses. Evaluating a ranking aggregation method on a specific type of dataset before using it is required to support the reliability of the result since the property of a dataset can influence the performance of an algorithm. Evaluation of aggregation methods is usually based on a simulated database especially for the algorithms designed for gene lists because of the lack of a known truth for real data. However, simulated datasets tend to be too small compared to experimental data and neglect key features, including heterogeneity of quality, relevance and the inclusion of unranked lists. In this study, a group of existing methods and their variations which are suitable for meta-analysis of gene lists are compared using simulated and real data. Simulated data was used to explore the performance of the aggregation methods as a function of emulating the common scenarios of real genomics data, with various heterogeneity of quality, noise level, and a mix of unranked and ranked data using 20000 possible entities. In addition to the evaluation with simulated data, a comparison using real genomic data on the SARS-CoV-2 virus, cancer (NSCLC), and bacteria (macrophage apoptosis) was performed. We summarise our evaluation results in terms of a simple flowchart to select a ranking aggregation method for genomics data.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3