IRE1α-XBP1 Activation Elicited by Viral Singled Stranded RNA via TLR8 May Modulate Lung Cytokine Induction in SARS-CoV-2 Pneumonia

Author:

Fernández José J.,Mancebo Cristina,Garcinuño Sonsoles,March Gabriel,Alvarez Yolanda,Alonso Sara,Inglada Luis,Blanco Jesús,Orduña Antonio,Montero Olimpio,Sandoval Tito A.,Cubillos-Ruiz Juan R.,Bustamante Elena,Fernández Nieves,Crespo Mariano SánchezORCID

Abstract

AbstractInitial symptoms of COVID-19 infection depend on viral replication, while hyperinflammation is a hallmark of critical illness and may drive severe pneumonia and death. Among the mechanisms potentially involved in the hyperinflammatory state, we focused on the unfolded protein response, because the IRE1α-XBP1 branch can be activated as result of the endoplasmic reticulum stress produced by the overwhelming synthesis of viral components and synergizes with Toll-like receptor signaling to induce cytokine expression. Viral RNA may trigger the IRE1α-XBP1 branch via TLR7/8 activation and like TLR2 and TLR4 may underpin cytokine expression trough XBP1 splicing (sXBP1). The expression of IL1B, IL6, and TNF mRNA in bronchoalveolar aspirates (BAAs) were higher in COVID-19 patients under mechanical ventilation and intubation who showed sXBP1. The scrutiny of monocytic/macrophagic markers during active infection showed a reduction of those involved in antigen presentation and survival, as well as the IFN stimulated gene MX1. These changes reverted after infection tests turned negative. In contrast, the expression of the mRNA of the serine protease TMPRSS2 involved in S protein priming showed a high expression during active infection. TLR8 mRNA showed an overwhelming expression as compared to TLR7 mRNA, which suggests the presence of monocyte-derived dendritic cells (MDDCs). In vitro experiments in MDDCs activated with ssRNA40, a positive-sense, single-stranded RNA (+ssRNA) like SARS-CoV-2 RNA, induced sXBP1 and the expression of IL-1β, IL-6, and TNFα at mRNA and protein levels. These responses were blunted by the IRE1α ribonuclease inhibitor MKC8866. Given the analogies between the results observed in BAAs and the effects induced by +ssRNA in MDDCs, IRE1α ribonuclease inhibition might be a druggable target in severe COVID-19 disease. Author summaryCOVID-19 pandemics put an unprecedented pressure on health systems. The need of new therapies urged research on the mechanisms triggered by the interaction of SARS-CoV-2 virus with host cells and the ensuing pathophysiology driving pneumonia and multiorgan failure. Hyperinflammation soon appeared as a mechanism involved in mortality that could even proceed after viral infection comes to an end. Hyperinflammation is supported by an inappropriate production of cytokines, and this explains the use of the term cytokine storm to refer to this phase of the disease. Given that insight into the molecular mechanisms driving cytokine storm should focus on the interaction of viral components with immune cells, experiments addressing the effect of viral components on its cognate receptors were carried out. It was observed that viral RNA induces a cytokine pattern like the one observed in bronchoalveolar aspirates of COVID-19 patients with critical disease. Overall, the study revealed that both cell organelle overload and receptors involved in the recognition of viral RNA may team up to induce proinflammatory cytokines. This mechanism can be exploited to develop new treatments for COVID-19 disease.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3