Compartmentalized Cell Envelope Biosynthesis in Mycobacterium tuberculosis

Author:

Puffal JuliaORCID,Sparks Ian L.,Brenner James R.,Li Xuni,Leszyk John D.,Hayashi Jennifer M.ORCID,Shaffer Scott A.ORCID,Morita Yasu S.ORCID

Abstract

AbstractThe intracellular membrane domain (IMD) is a metabolically active and laterally discrete membrane domain initially discovered in Mycobacterium smegmatis. The IMD correlates both temporally and spatially with the polar cell envelope elongation in M. smegmatis. Whether or not a similar membrane domain exists in pathogenic species remains unknown. Here we show that the IMD is a conserved membrane structure found in Mycobacterium tuberculosis. We used two independent approaches, density gradient fractionation of membrane domains and visualization of IMD-associated proteins through fluorescence microscopy, to determine the characteristics of the plasma membrane compartmentalization in M. tuberculosis. Proteomic analysis revealed that the IMD is enriched in metabolic enzymes that are involved in the synthesis of conserved cell envelope components such as peptidoglycan, arabinogalactan, and phosphatidylinositol mannosides. Using a fluorescent protein fusion of IMD-associated proteins, we demonstrated that this domain is concentrated in the polar region of the rod-shaped cells, where active cell envelope biosynthesis is taking place. Proteomic analysis further revealed the enrichment of enzymes involved in synthesis of phthiocerol dimycocerosates and phenolic glycolipids in the IMD. We validated the IMD association of two enzymes, α1,3-fucosyltransferase and fucosyl 4- O-methyltransferase, which are involved in the final maturation steps of phenolic glycolipid biosynthesis. Taken together, these data indicate that functional compartmentalization of membrane is an evolutionarily conserved feature found in both M. tuberculosis and M. smegmatis, and M. tuberculosis utilizes this membrane location for the synthesis of its surface- exposed lipid virulence factors.IMPORTANCEM. tuberculosis remains an important public health threat, with more than one million deaths every year. The pathogen’s ability to survive in the human host for decades highlights the importance of understanding how this bacterium regulates and coordinates its metabolism, cell envelope elongation, and growth. The IMD is a membrane structure that associates with the subpolar growth zone of actively growing mycobacteria, but its existence is only known in a non- pathogenic model, M. smegmatis. Here, we demonstrated the presence of the IMD in M. tuberculosis, making the IMD an evolutionarily conserved plasma membrane compartment in mycobacteria. Furthermore, our study revealed that the IMD is the factory for synthesizing phenolic glycolipids, virulence factors produced by slow-growing pathogenic species.

Publisher

Cold Spring Harbor Laboratory

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3