Genome-wide analysis of Schistosoma mansoni reveals population structure and praziquantel drug selection pressure within Ugandan hot-spot communities

Author:

Vianney Tushabe John,Berger Duncan J.,Doyle Stephen R.ORCID,Sankaranarayanan Geetha,Serubanja Joel,Nakawungu Prossy Kabuubi,Besigye Fred,Sanya Richard E.,Holroyd Nancy,Allan Fiona,Webb Emily L.,Elliott Alison M.,Berriman MattORCID,Cotton James A.ORCID

Abstract

AbstractPopulations within schistosomiasis control areas, especially those in Africa, are recommended to receive regular mass drug administration (MDA) with praziquantel (PZQ) as the main strategy for controlling the disease. The impact of PZQ treatment on schistosome genetics remains poorly understood, and is limited by a lack of high-resolution genetic data on the population structure of parasites within these control areas. We generated whole-genome sequence data from 174 individual miracidia collected from both children and adults from fishing communities on islands in Lake Victoria in Uganda that had received either annual or quarterly MDA with PZQ over four years, including samples collected immediately before and four weeks after treatment. Genome variation within and between samples was characterised and we investigated genomic signatures of natural selection acting on these populations that could be due to PZQ treatment. The parasite population on these islands was more diverse than found in nearby villages on the lake shore. We saw little or no genetic differentiation between villages, or between the groups of villages with different treatment intensity, but slightly higher genetic diversity within the pre-treatment compared to post-treatment parasite populations. We identified classes of genes significantly enriched within regions of the genome with evidence of recent positive selection among post-treatment and intensively treated parasite populations. The differential selection observed in post-treatment and pre-treatment parasite populations could be linked to any reduced susceptibility of parasites to praziquantel treatment.Author summarySchistosomiasis is caused by parasitic helminths of the genus Schistosoma. Schistosoma mansoni is the primary cause of intestinal schistosomiasis, a devastating and widespread parasitic infection that causes morbidity, death and socio-economic impact on endemic communities across the world and especially sub-Saharan Africa. Using whole-genome sequencing, we were able to elucidate the parasite population within Lake Victoria island fishing communities in Uganda which are among the major hotspots for schistosomiasis. We further assessed genetic markers that might be linked to recent observations concerning reduced susceptibility to praziquantel, the major drug used in the treatment of this disease. Whole-genome data on the population genetics of S. mansoni in an African setting will provide a strong basis for future functional genomics or transcriptomic studies that will be key to identifying drug targets, improving existing drugs or developing new therapeutic interventions.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3