Compartment-specific energy requirements of photosynthetic carbon metabolism in Camelina sativa leaves

Author:

Wieloch ThomasORCID,Sharkey Thomas DavidORCID

Abstract

AbstractDetailed knowledge about plant energy metabolism may aid crop improvements. Using published estimates of flux through central carbon metabolism, we phenotype energy metabolism in illuminated Camelina sativa leaves (grown at 22 °C, 500 μmol photons m-2 s-1) and report several findings. First, the oxidative pentose phosphate pathway (OPPP) transfers 3.3% of the NADPH consumed in the Calvin-Benson cycle to the cytosol. NADPH supply proceeds at about 10% of the rate of net carbon assimilation. However, concomitantly respired CO2 accounts for 4.8% of total rubisco activity. Hence, 4.8% of the flux through the Calvin-Benson cycle and photorespiration is spent on supplying cytosolic NADPH, a significant investment. Associated energy requirements exceed the energy output of the OPPP. Thus, autotrophic carbon metabolism is not simply optimised for flux into carbon sinks but sacrifices carbon and energy use efficiency to support cytosolic energy metabolism. To reduce these costs, we suggest bioengineering plants with a repressed cytosolic OPPP, and an inserted cytosolic NADPH-dependent malate dehydrogenase tuned to compensate for the loss in OPPP activity (if required). Second, sucrose cycling is a minor investment in overall leaf energy metabolism but a significant investment in cytosolic energy metabolism. Third, leaf energy balancing strictly requires oxidative phosphorylation, cofactor export from chloroplasts, and peroxisomal NADH import. Fourth, mitochondria are energetically self-sufficient. Fifth, carbon metabolism has an ATP/NADPH demand ratio of 1.52 which is met if ≤21.7% of whole electron flux is cyclic. Sixth, electron transport has a photon use efficiency of ≥62%. Lastly, we discuss interactions between the OPPP and the cytosolic oxidation-reduction cycle in supplying leaf cytosolic NADPH.Main ConclusionThe oxidative pentose phosphate pathway provides cytosolic NADPH yet reduces carbon and energy use efficiency. Repressing this pathway and introducing cytosolic NADPH-dependent malate dehydrogenase may increase crop yields by ≈5%.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3