Serum proteomics identifies immune pathways and candidate biomarkers of coronavirus infection in wild vampire bats

Author:

Becker Daniel J.ORCID,Lei Guang-Sheng,Janech Michael G.,Brand Alison M.,Fenton M. Brock,Simmons Nancy B.,Relich Ryan F.,Neely Benjamin A.ORCID

Abstract

AbstractThe apparent ability of bats to harbor many virulent viruses without showing disease is likely driven by distinct immune responses that coevolved with mammalian flight and the exceptional longevity of this order. Yet our understanding of the immune mechanisms of viral tolerance is restricted to a small number of bat–virus relationships and remains poor for coronaviruses (CoVs), despite their relevance to human health. Proteomics holds particular promise for illuminating the immune factors involved in bat responses to infection, because it can accommodate especially low sample volumes (e.g., sera) and thus can be applied to both large and small bat species as well as in longitudinal studies where lethal sampling is necessarily limited. Further, as the serum proteome includes proteins secreted from not only blood cells but also proximal organs, it provides a more general characterization of immune proteins. Here, we expand our recent work on the serum proteome of wild vampire bats (Desmodus rotundus) to better understand CoV pathogenesis. Across 19 bats sampled in 2019 in northern Belize with available sera, we detected CoVs in oral or rectal swabs from four individuals (21.1% positivity). Phylogenetic analyses identified all vampire bat sequences as novel α-CoVs most closely related to known human CoVs. Across 586 identified serum proteins, we found no strong differences in protein composition nor abundance between uninfected and infected bats. However, receiver operating characteristic curve analyses identified seven to 32 candidate biomarkers of CoV infection, including AHSG, C4A, F12, GPI, DSG2, GSTO1, and RNH1. Enrichment analyses using these protein classifiers identified downregulation of complement, regulation of proteolysis, immune effector processes, and humoral immunity in CoV-infected bats alongside upregulation of neutrophil immunity, overall granulocyte activation, myeloid cell responses, and glutathione processes. Such results denote a mostly cellular immune response of vampire bats to CoV infection and identify putative biomarkers that could provide new insights into CoV pathogenesis in wild and experimental populations. More broadly, applying a similar proteomic approach across diverse bat species and to distinct life history stages in target species could improve our understanding of the immune mechanisms by which wild bats tolerate viruses.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3