Abstract
AbstractThe study of pattern formation has benefited from reverse-engineering gene regulatory network (GRN) structure from spatio-temporal quantitative gene expression data. Traditional approaches omit tissue morphogenesis, hence focusing on systems where the timescales of pattern formation and morphogenesis can be separated. In such systems, pattern forms as an emergent property of the underlying GRN. This is not the case in many animal patterning systems, where patterning and morphogenesis are simultaneous. To address pattern formation in these systems we need to adapt our methodologies to explicitly accommodate cell movements and tissue shape changes. In this work we present a novel framework to reverse-engineer GRNs underlying pattern formation in tissues experiencing morphogenetic changes and cell rearrangements. By combination of quantitative data from live and fixed embryos we approximate gene expression trajectories (AGETs) in single cells and use a subset to reverse-engineer candidate GRNs using a Markov Chain Monte Carlo approach. GRN fit is assessed by simulating on cell tracks (live-modelling) and comparing the output to quantitative data-sets. This framework outputs candidate GRNs that recapitulate pattern formation at the level of the tissue and the single cell. To our knowledge, this inference methodology is the first to integrate cell movements and gene expression data, making it possible to reverse-engineer GRNs patterning tissues undergoing morphogenetic changes.
Publisher
Cold Spring Harbor Laboratory
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献