Volatile anesthetics inhibit presynaptic cGMP signaling to depress presynaptic excitability in rat hippocampal neurons

Author:

Speigel Iris,Osman Vanessa,Hemmings Hugh C

Abstract

AbstractVolatile anesthetics alter presynaptic function including effects on Ca2+ influx and neurotransmitter release. These actions are proposed to play important roles in their pleiotropic neurophysiological effects including unconsciousness and amnesia. The nitric oxide and cyclic guanosine monophosphate (NO/cGMP) signaling pathway has been implicated in presynaptic mechanisms, and disruption of NO/cGMP signaling has been shown to alter sensitivity to volatile anesthetics in vivo. We investigated NO/cGMP signaling in relation to volatile anesthetic actions in cultured rat hippocampal neurons using pharmacological tools and genetically encoded biosensors of cGMP levels. Using the fluorescent biosensor cGull we found that electrical stmulation-evoked NMDA-type glutamate receptor-independent presynaptic cGMP transients were inhibited −33.2% by isoflurane (0.51 mM) and −23.8% by sevoflurane (0.57 mM) (p<0.0001) compared to a stimulation without anesthetic. Isoflurane and sevoflurane inhibition of stimulation-evoked increases in presynaptic Ca2+ concentration, measured with synaptophysin-GCaMP6f, and synaptic vesicle exocytosis, measured with synaptophysin-pHlourin, were reduced by in neurons expressing the cGMP scavenger sponGee. This reduction in anesthetic effect was recapitulated by inhibiting HCN channels, a cGMP-modulated effector that can facilitate glutamate release. We propose that volatile anesthetics depress presynaptic cGMP signaling and downstream effectors like HCN channels that are essential to presynaptic function and excitability. These findings identify a novel mechanism by which volatile anesthetics depress synaptic transmission via second messenger signaling involving the NO/cGMP pathway.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3