Abstract
AbstractBackgroundObtaining reliable rate heart estimates from waist based electrocardiograms (ECGs) poses a very challenging problem due to the presence of extreme motion artifacts. The literature reveals few, if any, attempts to apply motion artifact cancellation methods to waist based ECGs. This paper describes a new methodology for ameliorating the effects of motion artifacts in ECGs by specifically targeting ECG peaks for elimination that are determined to be correlated with accelerometer peaks. This peak space cancellation is applied to real world waist based ECGs.Algorithm SummaryThe methodology includes successive applications of a previously described pattern-based heart beat detection scheme (Temporal Pattern Search, or “TEPS”). In the first application, TEPS is applied to accelerometer signals recorded contemporaneously with ECG signals to identify high-quality accelerometer peak sequences (SA) indicative of quasi-periodic motion likely to impair identification of peaks in a corresponding ECG signal. The process then performs ECG peak detection and locates the closest in time ECG peak to each peak in an SA. The differences in time between ECG and SA peaks are clustered. If the number of elements in a cluster of peaks in an SA exceeds a threshold, the ECG peaks in that cluster are removed from further processing. After this peak removal process, further QRS detection proceeds according to TEPS.ExperimentThe above procedure was applied to data from real world experiments involving four sessions of walking and jogging on a dirt road for approximately 20-25 minutes. A compression shirt with textile electrodes served as the ground truth recording. A textile electrode based chest strap was worn around the waist to generate a single channel signal upon which to test peak space cancellation/TEPS.ResultsBoth walking and jogging heart rates were generally well tracked. In the four recordings, the percentage of segments within 10 beats/minute of reference was 96%, 99%, 92% and 96%. The percentage of segments within 5 beats/minute of reference was 86%, 90%, 82% and 78%. There was very good agreement between the RR intervals associated with the reference and waist recordings. For acceptable quality segments, the root mean square sum of successive RR interval differences (RMSSD) was calculated for both the reference and waist recordings. Next, the difference between waist and reference RMSSDs was calculated (ΔRMSSD). The mean ΔRMSSD (over acceptable segments) was 4.6 m, 5.2 ms, 5.2 ms and 6.6 ms for the four recordings. Given that only one waist ECG channel was available, and that the strap used for the waist recording was not tailored for that purpose, the proposed methodology shows promise for waist based sinus rhythm QRS detection.
Publisher
Cold Spring Harbor Laboratory