Computed cancer interactome explains the effects of somatic mutations in cancers

Author:

Zhang Jing,Pei Jimin,Durham Jesse,Bos Tasia,Cong Qian

Abstract

AbstractProtein-protein interactions (PPIs) are involved in almost all essential cellular processes. Perturbation of PPI networks plays critical roles in tumorigenesis, cancer progression and metastasis. While numerous high-throughput experiments have produced a vast amount of data for PPIs, these datasets suffer from high false positive rates and exhibit a high degree of discrepancy. Coevolution of amino acid positions between protein pairs has proven to be useful in identifying interacting proteins and providing structural details of the interaction interfaces with the help of deep learning methods like AlphaFold (AF). In this study, we applied AF to investigate the cancer protein-protein interactome. We predicted 1,798 PPIs for cancer driver proteins involved in diverse cellular processes such as transcription regulation, signal transduction, DNA repair and cell cycle. We modeled the spatial structure for the predicted binary protein complexes, 1,087 of which lacked previous 3D structure information. Our predictions offer novel structural insight into many cancer-related processes such as the MAP kinase cascade and Fanconi anemia pathway. We further investigated the cancer mutation landscape by mapping somatic missense mutations (SMMs) in cancer to the predicted PPI interfaces and performing enrichment and depletion analyses. Interfaces enriched or depleted with SMMs exhibit different preferences for functional categories. Interfaces enriched in mutations tend to function in pathways that are deregulated in cancers and they may help explain the molecular mechanisms of cancers in patients; interfaces lacking mutations appear to be essential for the survival of cancer cells and thus may be future targets for PPI modulating drugs.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3