Optimal experimental designs for estimating genetic and non-genetic effects underlying infectious disease transmission

Author:

Pooley ChristopherORCID,Marion GlennORCID,Bishop Stephen,Doeschl-Wilson Andrea

Abstract

AbstractBackgroundInfectious disease spread in populations is controlled by individuals’ susceptibility (propensity to acquire infection), infectivity (propensity to pass on infection to others) and recoverability (propensity to recover/die). Estimating the effects of genetic risk factors on these host epidemiological traits can help reduce disease spread through genetic control strategies. However, the effects of previously identified ‘disease resistance SNPs’ on these epidemiological traits are usually unknown. Recent advances in computational statistics make it now possible to estimate the effects of single nucleotide polymorphisms (SNPs) on these traits from longitudinal epidemic data (e.g. infection and/or recovery times of individuals or diagnostic test results). However, little is known how to optimally design disease transmission experiments or field studies to maximise the precision at which pleiotropic SNP effects estimates for susceptibility, infectivity and recoverability can be estimated.ResultsWe develop and validate analytical expressions for the precision of SNP effects estimates on the three host traits assuming a disease transmission experiment with one or more non-interacting contact groups. Maximising these leads to three distinct ‘experimental’ designs, each specifying a different set of ideal SNP genotype compositions across groups: a) appropriate for a single contact-group, b) a multi-group design termed “pure”, and c) a multi-group design termed “mixed”, where ‘pure’ and ‘mixed’ refer to contact groups consisting of individuals with the same or different SNP genotypes, respectively. Precision estimates for susceptibility and recoverability were found to be less sensitive to the experimental design than infectivity. Data from multiple groups were found more informative about infectivity effects than from a single group containing the same number of individuals. Whilst the analytical expressions suggest that the multi-group pure and mixed designs estimate SNP effects with similar precision, the mixed design is preferable because it uses information from naturally occurring infections rather than those artificially induced. The same optimal design principles apply to estimating other categorical fixed effects, such as vaccinations status, helping to more effectively quantify their epidemiological impact.An onlinesoftware toolSIRE-PChas been developed which calculates the precision of estimated substitution and dominance effects of a single SNP (or vaccine status) associated with all three traits depending on experimental design parameters.ConclusionsThe developed methodology and software tool can be used to aid the design of disease transmission experiments for estimating the effect of individual SNPs and other categorical variables underlying host susceptibility, infectivity and recoverability.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 168. New tools and insights to enable breeding for reduced disease transmission;Proceedings of 12th World Congress on Genetics Applied to Livestock Production (WCGALP);2022-12-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3