Abstract
AbstractSchwann cells play a critical role after peripheral nerve injury by clearing myelin debris, forming axon-guiding Bands of Bungner, and re-myelinating regenerating axons. Schwann cells undergo epigenomic remodeling to differentiate into a repair state that expresses unique genes, some of which are not expressed at other stages of Schwann cell development. We previously identified a set of enhancers that are activated in Schwann cells after nerve injury, and we determined if these enhancers are pre-programmed into the Schwann cell epigenome as poised enhancers prior to injury. Poised enhancers share many attributes of active enhancers, such as open chromatin, but are marked by repressive H3K27 trimethylation (H3K27me3) rather than H3K27ac. We find that most injury-induced enhancers are not marked as poised enhancers prior to injury indicating that injury-induced enhancers are not pre-programmed in the Schwann cell epigenome. Injury-induced enhancers are enriched with AP-1 binding motifs, and the c-JUN subunit of AP-1 had been shown to be critical to drive the transcriptional response of Schwann cells after injury. Using in vivo ChIP-seq analysis we find that c-JUN binds to a subset of injury-induced enhancers. To test the role of specific injury-induced enhancers, we focused on c-JUN-binding enhancers upstream of the Sonic Hedgehog (Shh) gene, which is only upregulated in repair Schwann cells compared to other stages of Schwann cell development. We confirm that c-JUN regulates these enhancers and also show that the enhancers are required for robust induction of the Shh gene after injury.Significance StatementThe pro-regenerative actions of Schwann cells after nerve injury depends on upon profound reprogramming of the epigenome. The repair state is directed by injury-induced transcription factors, like JUN, which is uniquely required after nerve injury. In this study, we test whether the injury program is pre-programmed into the epigenome as poised enhancers and define which enhancers bind JUN. Finally, we test the roles of these enhancers by performing CRISPR-mediated deletion of JUN-bound injury enhancers in the Sonic hedgehog gene. While many long range enhancers drive expression of Sonic hedgehog at different developmental stages of specific tissues, these studies identify an entirely new set of enhancers that are required for Sonic hedgehog induction in Schwann cells after injury.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献