Lipid nanoparticles delivering constitutively active STING mRNA as a novel anti-cancer therapeutic approach

Author:

Liu Wei,Alameh Mohamad-Gabriel,Yang June F.,Xu Jonathan R.,Lin Paulo JC,Tam Ying K,Weissman Drew,You Jianxin

Abstract

AbstractTreating immunosuppressive tumors represents a major challenge in cancer therapies. Activation of STING signaling has shown remarkable potential to invigorate the immunologically ‘cold’ tumor microenvironment (TME). However, we and others have shown that STING is silenced in many cancers, including pancreatic ductal adenocarcinoma (PDAC) and Merkel cell carcinoma (MCC), both of which are associated with an immune-dampened TME. In this study, we applied mRNA lipid nanoparticles (LNP) to deliver a permanently active gain-of-function STINGR284S mutant into PDAC and MCC cells. Expression of STINGR284S induces cytokines and chemokines crucial for promoting intratumoral infiltration of CD8+ T cells and, importantly, also leads to robust cancer cell death while avoiding T cell entry and toxicity. Our studies demonstrated that mRNA-LNP delivery of STINGR284S could be explored as a novel therapeutic tool to reactivate antitumor response in an array of STING-deficient cancers while overcoming the toxicity and limitations of conventional STING agonists.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3