HAT-field: a cheap, robust and quantitative point-of-care serological test for Covid-19

Author:

Joly EtienneORCID,Ribes Agnès MaurelORCID

Abstract

AbstractWe have recently described a very simple and cheap serological test called HAT to detect antibodies directed against the RBD of the SARS-Cov-2 virus. HAT is based on hemagglutination, triggered by a single reagent (IH4-RBD) comprised of the viral RBD domain fused to a nanobody specific for glycophorin, which is expressed at very high levels at the surface of human red blood cells (RBCs).One of the main initial goals of this study was to devise a test protocol that would be sensitive and reliable, yet require no specialized laboratory equipment such as adjustable pipets, so that it could be performed in the most remote corners of the world by people with minimal levels of training. Because antibody levels against the viral RBD have been found to correlate closely with sero-neutralisation titers, and thus with protection against reinfection, it has become obvious during the course of this study that making this test reliably quantitative would be a further significant advantage.Using IH4-RBD based on the original Wuhan sequence, we have found that, in PBN, a buffer which contains BSA and sodium azide, the reagent is stable for over 6 months at room temperature, and that PBN also improves HAT performance compared to using straight PBS. We also show that performing HAT at either 4°C, room temperature or 37°C has minimal influence on the results, and that quantitative evaluation of the levels of antibodies directed against the SARS-CoV-2 RBD can be achieved in a single step using titration of the IH4-RBD reagent.The HAT-field protocol described here requires only very simple disposable equipment and a few microliters of whole blood, such as can be obtained by finger prick. Because it is based on a single soluble reagent, the test can be adapted very simply and rapidly to detect antibodies against variants of the SARS-CoV-2, or conceivably against different pathogens. HAT-field appears well suited to provide quantitative assessments of the serological protection of populations as well as individuals, and given its very low cost, the stability of the IH4-RBD reagent in the adapted buffer, and the simplicity of the procedure, could be deployed pretty much anywhere, including in the poorest countries and the most remote corners of the globe.Note: This manuscript has been refereed by Review Commons, and modified thanks to the comments and suggestions from three referees. Those comments, and our replies, are provided at the end of the manuscript’s pdf, and can also be accessed by clicking on the blue tab found to the right of the MedRXiv window.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3