Probing the proton release by Photosystem II in the S1 to S2 high-spin transition

Author:

Boussac AlainORCID,Sugiura Miwa,Sellés JulienORCID

Abstract

AbstractThe stoichiometry and kinetics of the proton release were investigated during each transition of the S-state cycle in Photosystem II (PSII) from Thermosynechococcus elongatus containing either a Mn4CaO5 (PSII/Ca) or a Mn4SrO5 (PSII/Sr) cluster. The measurements were done at pH 6.0 and pH 7.0 knowing that, in PSII/Ca at pH 6.0 and pH 7.0 and in PSII/Sr at pH 6.0, the flash-induced S2-state is in a low-spin configuration (S2LS) whereas in PSII/Sr at pH 7.0, the S2-state is in a high-spin configuration (S2HS) in half of the centers. Two measurements were done; the time-resolved flash dependent i) absorption of either bromocresol purple at pH 6.0 or neutral red at pH 7.0 and ii) electrochromism in the Soret band of PD1 at 440 nm. The fittings of the oscillations with a period of four indicate that one proton is released in the S1 to S2HS transition in PSII/Sr at pH 7.0. It has previously been suggested that the proton released in the S2LS to S3 transition would be released in a S2LSTyrZ → S2HSTyrZ transition before the electron transfer from the cluster to TyrZ occurs. The release of a proton in the S1TyrZ →S2HSTyrZ transition would logically imply that this proton release is missing in the S2HSTyrZ to S3TyrZ transition. Instead, the proton release in the S1 to S2HS transition in PSII/Sr at pH 7.0 was mainly done at the expense of the proton release in the S3 to S0 and S0 to S1 transitions. However, at pH 7.0, the electrochromism of PD1 seems larger in PSII/Sr when compared to PSII/Ca in the S3 state. This points to the complex link between proton movements in and immediately around the Mn4 cluster and the mechanism leading to the release of protons into the bulk.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3