Optimized phylogenetic clustering of HIV-1 sequence data for public health applications

Author:

Chato Connor,Feng Yi,Ruan Yuhua,Xing Hui,Herbeck Joshua,Kalish Marcia,Poon Art F. Y.ORCID

Abstract

ABSTRACTClusters of genetically similar infections suggest rapid transmission and may indicate priorities for public health action or reveal underlying epidemiological processes. However, clusters often require user-defined thresholds and are sensitive to non-epidemiological factors, such as non-random sampling. Consequently the ideal threshold for public health applications varies substantially across settings. Here, we show a method which selects optimal thresholds for phylogenetic (subset tree) clustering based on population. We evaluated this method on HIV-1 pol datasets (n = 14,221 sequences) from four sites in USA (Tennessee, Seattle), Canada (Northern Alberta) and China (Beijing). Clusters were defined by tips descending from an ancestral node (with a minimum bootstrap support of 95%) through a series of branches, each with a length below a given threshold. Next, we used pplacer to graft new cases to the fixed tree by maximum likelihood. We evaluated the effect of varying branch-length thresholds on cluster growth as a count outcome by fitting two Poisson regression models: a null model that predicts growth from cluster size, and an alternative model that includes mean collection date as an additional covariate. The alternative model was favoured by AIC across most thresholds, with optimal (greatest difference in AIC) thresholds ranging 0.007–0.013 across sites. The range of optimal thresholds was more variable when re-sampling 80% of the data by location (IQR 0.008 – 0.016, n = 100 replicates). Our results use prospective phylogenetic cluster growth and suggest that there is more variation in effective thresholds for public health than those typically used in clustering studies.

Publisher

Cold Spring Harbor Laboratory

Reference75 articles.

1. A Novel Coronavirus from Patients with Pneumonia in China, 2019

2. Clusters of coronavirus disease in communities, Japan, January–April 2020;Emerging infectious diseases,2020

3. Field investigation with real-time virus genetic characterisation support of a cluster of Ebola virus disease cases in Dubréka, Guinea, April to June 2015;Eurosurveillance,2018

4. Genomic surveillance elucidates Ebola virus origin and transmission during the 2014 outbreak

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3