A deep CNN framework for neural drive estimation from HD-EMG across contraction intensities and joint angles

Author:

Wen Yue,Kim Sangjoon J.,Avrillon Simon,Levine Jackson T.,Hug François,Pons José L.

Abstract

AbstractObjectivePrevious studies have demonstrated promising results in estimating the neural drive to muscles, the net output of all motoneurons that innervate the muscle, using high-density electromyography (HD-EMG) for the purpose of interfacing with assistive technologies. Despite the high estimation accuracy, current methods based on neural networks need to be trained with specific motor unit action potential (MUAP) shapes updated for each condition (i.e., varying muscle contraction intensities or joint angles). This preliminary step dramatically limits the potential generalization of these algorithms across tasks. We propose a novel approach to estimate the neural drive using a deep convolutional neural network (CNN), which can identify the cumulative spike train (CST) through general features of MUAPs from a pool of motor units.MethodsWe recorded HD-EMG signals from the gastrocnemius medialis muscle under three isometric contraction scenarios: 1) trapezoidal contraction tasks with different intensities, 2) contraction tasks with a trapezoidal or sinusoidal torque target, and 3) trapezoidal contraction tasks at different ankle angles. We applied a convolutive blind source separation (BSS) method to decompose HD-EMG signals to CST and segmented both signals into windows to train and validate the deep CNN. Then, we optimized the structure of the deep CNN and validated its generalizability across contraction tasks within each scenario.ResultsWith the optimal configuration for the HD-EMG data window (overlap of 20 data points and window length of 40 data points), the deep CNN estimated the CST close to that from BSS, with a correlation coefficient higher than 0.96 and normalized root-mean-square-error lower than 7% with respect to the BSS (golden standard) within each scenario.ConclusionThe proposed deep CNN framework can utilize data from different contraction tasks (e.g., different intensities), learn general features of MUAP variants, and estimate the neural drive for other contraction tasks.SignificanceWith the proposed deep CNN, we could potentially build a neuraldrive-based human-machine interface that is generalizable to different contraction tasks without retraining.

Publisher

Cold Spring Harbor Laboratory

Reference35 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3