MicroRNA Detection in Biological Media Using a Split Aptamer Platform

Author:

Wang Liming,Hast KernORCID,Aggarwal Tushar,Baci MelihORCID,Hong Jonathan,Izgu Enver CagriORCID

Abstract

ABSTRACTIntercellular microRNA (miRNA)-based communication has been implicated in a wide array of functional and dysfunctional biological processes. This has raised attention to the potential use of miRNAs as biomarkers for disease diagnosis and prognosis and produced interest in their detection. Though the list of clinically significant miRNA biomarkers is rapidly expanding, it remains challenging to adapt current tools to investigate new targets in biological environments. Systematic approaches for the rapid development of miRNA biosensors are valuable to reduce this disparity. We describe here a methodology for developing aptamer-based fluorescent biosensors that can specifically detect miRNAs in biological environments, including culture medium from HeLa cells, human serum, and human plasma. This methodology includes the semi-rational design of the hybridization between a pair of split DNA aptamer oligonucleotides and the miRNA target to build a pool of potential sensor designs, and the screening of this pool for designs with high signal-to-background ratio and sequence selectivity. The method uses natural oligonucleotides without chemical modification, and is effective in buffer, 10%, and 30% (v/v) biological media. Following this approach, we developed sensors that detect three miRNA targets (miR-19b, miR-21, and miR-92a) at concentrations as low as 5 nM without amplification and are selective against single-nucleotide mutants. This work expands upon the current design principles of nucleic acid-based biosensors and provides a method to rapidly develop diagnostic tools for novel and niche miRNA targets of interest.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3