The eardrums move when the eyes move: A multisensory effect on the mechanics of hearing

Author:

Gruters K. G.ORCID,Murphy D. L. K.ORCID,Jenson Cole D.,Smith D. W.,Shera C. A.ORCID,Groh J. M.ORCID

Abstract

ABSTRACTInteractions between sensory pathways such as the visual and auditory systems are known to occur in the brain, but where they first occur is uncertain. Here we show a novel multimodal interaction evident at the eardrum. Ear canal microphone measurements in humans (n=19 ears in 16 subjects) and monkeys (n=5 ears in 3 subjects) performing a saccadic eye movement task to visual targets indicated that the eardrum moves in conjunction with the eye movement. The eardrum motion was oscillatory and began as early as 10 ms before saccade onset in humans or with saccade onset in monkeys. These eardrum movements, which we dub Eye Movement Related Eardrum Oscillations (EMREOs), occurred in the absence of a sound stimulus. The EMREOs’ amplitude and phase depended on the direction and horizontal amplitude of the saccade. They lasted throughout the saccade and well into subsequent periods of steady fixation. We discuss the possibility that the mechanisms underlying EMREOs create eye movement-related binaural cues that may aid the brain in evaluating the relationship between visual and auditory stimulus locations as the eyes move.SIGNIFICANCE STATEMENTThe peripheral hearing system contains several motor mechanisms that allow the brain to modify the auditory transduction process. Movements or tensioning of either the middle-ear muscles or the outer hair cells modify eardrum motion, producing sounds that can be detected by a microphone placed in the ear canal (e.g. as otoacoustic emissions). Here, we report a novel form of eardrum motion produced by the brain via these systems -- oscillations synchronized with and covarying with the direction and amplitude of saccades. These observations suggest that a vision-related process modulates the first stage of hearing. In particular, these eye-movement related eardrum oscillations may help the brain connect sights and sounds despite changes in the spatial relationship between the eyes and the ears.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3