GeneQC: A quality control tool for gene expression estimation based on RNA-sequencing reads mapping

Author:

McDermaid Adam,Chen Xin,Zhang Yiran,Xie Juan,Wang Cankun,Ma Qin

Abstract

AbstractMotivationOne of the main benefits of using modern RNA-sequencing (RNA-Seq) technology is the more accurate gene expression estimations compared with previous generations of expression data, such as the microarray. However, numerous issues can result in the possibility that an RNA-Seq read can be mapped to multiple locations on the reference genome with the same alignment scores, which occurs in plant, animal, and metagenome samples. Such a read is so-called a multiple-mapping read (MMR). The impact of these MMRs is reflected in gene expression estimation and all downstream analyses, including differential gene expression, functional enrichment, etc. Current analysis pipelines lack the tools to effectively test the reliability of gene expression estimations, thus are incapable of ensuring the validity of all downstream analyses.ResultsOur investigation into 95 RNA-Seq datasets from seven species (totaling 1,951GB) indicates an average of roughly 22% of all reads are MMRs for plant and animal species. Here we present a tool called GeneQC (Gene expression Quality Control), which can accurately estimate the reliability of each gene’s expression level. The underlying algorithm is designed based on extracted genomic and transcriptomic features, which are then combined using elastic-net regularization and mixture model fitting to provide a clearer picture of mapping uncertainty for each gene. GeneQC allows researchers to determine reliable expression estimations and conduct further analysis on the gene expression that is of sufficient quality. This tool also enables researchers to investigate continued re-alignment methods to determine more accurate gene expression estimates for those with low reliability.AvailabilityGeneQC is freely available at http://bmbl.sdstate.edu/GeneQC/home.html.Contactqin.ma@sdstate.eduSupplementary informationSupplementary data are available at Bioinformatics online.

Publisher

Cold Spring Harbor Laboratory

Reference49 articles.

1. Anders, S. and Huber, W. Differential expression of RNA-Seq data at the gene level–the DESeq package. Heidelberg, Germany: European Molecular Biology Laboratory (EMBL) 2012.

2. HTSeq--a Python framework to work with high-throughput sequencing data

3. Andrews, S. FastQC: a quality control tool for high throughput sequence data. 2010.

4. Simulation-based comprehensive benchmarking of RNA-seq aligners;Nature methods,2017

5. ContextMap 2: fast and accurate context-based RNA-seq mapping;BMC bioinformatics,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3