Detecting Novel Sequence Signals in Targeting Peptides Using Deep Learning

Author:

Almagro Armenteros J.J.,Salvatore M.,Emanuelsson O.ORCID,Winther O.,von Heijne G.ORCID,Elofsson A.ORCID,Nielsen H.

Abstract

AbstractIn bioinformatics, machine learning methods have been used to predict features embedded in the sequences. In contrast to what is generally assumed, machine learning approaches can also provide new insights into the underlying biology. Here, we demonstrate this by presenting TargetP 2.0, a novel state of art method to identify N-terminal sorting signals, which direct proteins to the secretory pathway, mitochondria and chloroplasts or other plastids.By examining the strongest signals from the attention layer in the network, we find that the second residue in the protein, i.e. the one following the initial methionine, has a strong influence on the classification. When subsequently examining all targeting peptides, we observe that two-thirds of chloroplast and thylakoid transit peptides have an alanine in position two, but only 20% of other plant proteins. Further highlighting the importance of the second residue, we also note that in fungi and single-celled eukaryotes, less than 30% of the targeting peptides have an amino acid that allows the removal of the N-terminal methionine compared with 60% for the proteins without targeting peptide.TargetP 2.0 is available at http://www.cbs.dtu.dk/services/TargetP-2.0/index.php

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3