Retinoblastoma protein positively regulates terminal adipocyte differentiation through direct interaction with C/EBPs.

Author:

Chen P L,Riley D J,Chen Y,Lee W H

Abstract

To define a mechanism by which retinoblastoma protein (Rb) functions in cellular differentiation, we studied primary fibroblasts from the lung buds of wild-type (RB+/+) and null-mutant (RB-/-) mouse embryos. In culture, the RB+/+ fibroblasts differentiated into fat-storing cells, either spontaneously or in response to hormonal induction; otherwise syngenic RB-/- fibroblasts cultured in identical conditions did not. Ectopic expression of normal Rb, but not Rb with a single point mutation, enabled RB-/- fibroblasts to differentiate into adipocytes. Rb appears in murine fibroblasts to activate CCAAT/enhancer-binding proteins (C/EBPs), a family of transcription factors crucial for adipocyte differentiation. Physical interaction between Rb and C/EBPs was demonstrated by reciprocal coimmunoprecipitation, but occurred only in differentiating cells. Wild-type Rb also enhanced the binding of C/EBP to cognate DNA sequences in vitro and the transactivation of a C/EBPbeta-responsive promoter in cells. Taken together, these observations establish a direct and positive role for Rb in terminal differentiation. Such a role contrasts with the function of Rb in arresting cell cycle progression in G1 by negative regulation of other transcription factors like E2F-1.

Publisher

Cold Spring Harbor Laboratory

Subject

Developmental Biology,Genetics

Reference52 articles.

1. A single Cys706 to Phe substitution in the retinoblastoma protein causes loss of binding to the SV40 T antigen.;Cell Growth Differ.,1990

2. Suppression of Tumorigenicity of Human Prostate Carcinoma Cells by Replacing a Mutated RB Gene

3. Regulated expression of three C/EBP isoforms during adipose conversion of 3T3-L1 cells.

4. Molecular Cloning and Developmental Expression of Mouse p130, a Member of the Retinoblastoma Gene Family

5. The retinoblastoma protein as a fundamental mediator of growth and differentiation signals.;Crit. Rev. Eukaryotic Gene Expression,1995

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3