Author:
Sohrmann M,Fankhauser C,Brodbeck C,Simanis V
Abstract
Little is known about the mechanisms that establish the position of the division plane in eukaryotic cells. Wild-type fission yeast cells divide by forming a septum in the middle of the cell at the end of mitosis. Dmf1 mutants complete mitosis and initiate septum formation, but the septa that form are positioned at random locations and angles in the cell, rather than in the middle. We have cloned the dmf1 gene as a suppressor of the cdc7-24 mutant. The dmf1 mutant is allelic with mid1. The gene encodes a novel protein containing a putative nuclear localization signal, and a carboxy-terminal PH domain. In wild-type cells, Dmf1p is nuclear during interphase, and relocates to form a medial ring at the cell cortex coincident with the onset of mitosis. This relocalization occurs before formation of the actin ring and is associated with increased phosphorylation of Dmf1p. The Dmf1p ring can be formed in the absence of an actin ring, but depends on some of the genes required for actin ring formation. When the septum is completed and the cells separate, Dmf1p staining is once again nuclear. These data implicate Dmf1p as an important element in assuring correct placement of the division septum in Schizosaccharomyces pombe cells.
Publisher
Cold Spring Harbor Laboratory
Subject
Developmental Biology,Genetics
Cited by
236 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献