Inference of direction, diversity, and frequency of HIV-1 transmission using approximate Bayesian computation

Author:

Romero-Severson Ethan O.,Bulla Ingo,Hengartner Nick,Bártolo Inês,Abecasis Ana,Azevedo-Pereira José M.,Taveira Nuno,Leitner Thomas

Abstract

ABSTRACTDiversity of the founding population of Human Immunodeficiency Virus Type 1 (HIV-1) transmissions raises many important biological, clinical, and epidemiological issues. In up to 40% of sexual infections there is clear evidence for multiple founding variants, which can influence the efficacy of putative prevention methods and the reconstruction of epidemiologic histories. To measure the diversity of the founding population and to compute the probability of alternative transmission scenarios, while explicitly taking phylogenetic uncertainty into account, we created an Approximate Bayesian Computation (ABC) method based on a set of statistics measuring phylogenetic topology, branch lengths, and genetic diversity. We applied our method to a heterosexual transmission pair showing a complex paraphyletic-polyphyletic donor-recipient phylogenetic topology. We found evidence identifying the donor that was consistent with the known facts of the case (Bayes factor >20). We also found that while the evidence for ongoing transmission between the pair was as good or better than the singular transmission event model, it was only viable when the rate of ongoing transmission was implausibly high (~1/day). We concluded that the singular transmission model, which was able to estimate the diversity of the founding population (mean 7% substitutions/site), was more biologically plausible. Our study provides a formal inference framework to investigate HIV-1 direction, diversity, and frequency of transmission. The ability to measure the diversity of founding populations in both simple and complex transmission situations is essential to understanding the relationship between the phylogeny and epidemiology of HIV-1 as well as in efforts developing new prevention technologies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3