Adult Canine Intestinal Derived Organoids: A Novel In Vitro System for Translational Research in Comparative Gastroenterology

Author:

Chandra Lawrance,Borcherding Dana C,Kingsbury Dawn,Atherly Todd,Ambrosini Yoko M,Bourgois-Mochel Agnes,Yuan Wang,Kimber Michael,Qi Yijun,Wang Qun,Wannemuehler Michael,Ellinwood N Matthew,Snella Elizabeth,Martin Martin,Skala Melissa,Meyerholz David,Estes Mary,Fernandez-Zapico Martin E.,Jergens Albert E.,Mochel Jonathan P,Allenspach Karin

Abstract

AbstractBackgroundLarge animal models, such as the dog, are increasingly being used over rodent models for studying naturally occurring diseases including gastrointestinal (GI) disorders. Dogs share similar environmental, genomic, anatomical, and intestinal physiologic features with humans. To bridge the gap between currently used animal models (e.g. mouse) and humans, and expand the translational potential of the dog model, we developed a three dimensional (3D) canine GI organoid (enteroid and colonoid) system. Organoids have recently gained interest in translational research as this model system better recapitulates the physiological and molecular features of the tissue environment in comparison with two-dimensional cultures.ResultsOrganoids were propagated from isolation of adult intestinal stem cells (ISC) from whole jejunal tissue as well as endoscopically obtained duodenal, ileal and colonic biopsy samples of healthy dogs and GI cases, including inflammatory bowel disease (IBD) and intestinal carcinomas. Intestinal organoids were comprehensively characterized using histology, immunohistochemistry, RNA in situ hybridization and transmission electron microscopy, and organoids mimicked the in vivo tissue environment. Physiological relevance of the enteroid system was defined using functional assays such as Optical Metabolic Imaging (OMI), the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) function assay, and Exosome-Like Vesicles (EV) uptake assay, as a basis for wider applications of this technology in basic, preclinical and translational GI research.ConclusionsIn summary, our findings establish the canine GI organoid systems as a novel model to study naturally occurring intestinal diseases in dogs and humans. Furthermore, canine organoid systems will help to elucidate host-pathogen interactions contributing to GI disease pathogenesis.

Publisher

Cold Spring Harbor Laboratory

Reference72 articles.

1. Mouse Models of Human Disease: An Evolutionary Perspective

2. Large animal models: the key to translational discovery in digestive disease research;Cell Mol Gastr Hepatol.,2016

3. Animal models of metabolic syndrome: a review;Nutr Metab.,2016

4. Intestinal Stem Cells to Advance Drug Development, Precision, and Regenerative Medicine: A Paradigm Shift in Translational Research;AAPS J.,2017

5. A Brief History of Animal Modeling;Mo Med.,2013

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3