Comparison of vibrotactile and joint-torque feedback in a myoelectric upper-limb prosthesis

Author:

Thomas Neha,Ung Garrett,McGarvey Colette,Brown Jeremy D.

Abstract

AbstractBackgroundDespite the technological advancements in myoelectric prostheses, body-powered prostheses remain a popular choice for amputees, in part due to the natural sensory advantage they provide. Research on haptic feedback in myoelectric prostheses has delivered mixed results. Furthermore, there is limited research comparing various haptic feedback modalities in myoelectric prostheses. In this paper, we present a comparison of the feedback intrinsically present in body-powered prostheses (joint-torque feedback) to a commonly proposed feedback modality for myoelectric prostheses (vibrotactile feedback). In so doing, we seek to understand whether the advantages of kinesthetic feedback present in body-powered prostheses translate to myoelectric prostheses, and whether there are differences between kinesthetic and cutaneous feedback in prosthetic applications.MethodsWe developed an experimental testbed that features a cable-driven, voluntary-closing 1-DoF prosthesis, a capstan-driven elbow exoskeleton, and a vibrotactile actuation unit. The system can present grip force to users as either a flexion moment about the elbow or vibration on the wrist. To provide an equal comparison of joint-torque and vibrotactile feedback, a stimulus intensity matching scheme was utilized. Non-amputee participants (n=12) were asked to discriminate objects of varying stiffness with the prosthesis in three conditions: no haptic feedback, vibrotactile feedback, and joint-torque feedback.ResultsResults indicate that haptic feedback increased discrimination accuracy over no haptic feedback, but the difference between joint-torque feedback and vibrotactile feedback was not significant. In addition, our results highlight nuanced differences in performance depending on the objects’ stiffness, and suggest that participants likely pay less attention to incidental cues with the addition of haptic feedback.ConclusionEven when haptic feedback is not modality matched to the task, such as in the case of vibrotactile feedback, performance with a myoelectric prosthesis can improve significantly. This implies it is possible to achieve the same benefits with vibrotactile feedback, which is cheaper and easier to implement than other forms of feedback.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3