The genomic architecture and molecular evolution of ant odorant receptors

Author:

McKenzie Sean K.ORCID,Kronauer Daniel J.C.

Abstract

The massive expansions of odorant receptor (OR) genes in ant genomes are notable examples of rapid genome evolution and adaptive gene duplication. However, the molecular mechanisms leading to gene family expansion remain poorly understood, partly because available ant genomes are fragmentary. Here, we present a highly contiguous, chromosome-level assembly of the clonal raider ant genome, revealing the largest known OR repertoire in an insect. While most ant ORs originate via local tandem duplication, we also observe several cases of dispersed duplication followed by tandem duplication in the most rapidly evolving OR clades. We found that areas of unusually high transposable element density (TE islands) were depauperate in ORs in the clonal raider ant, and found no evidence for retrotransposition of ORs. However, OR loci were enriched for transposons relative to the genome as a whole, potentially facilitating tandem duplication by unequal crossing over. We also found that ant OR genes are highly AT-rich compared to other genes. In contrast, in flies, OR genes are dispersed and largely isolated within the genome, and we find that fly ORs are not AT-rich. The genomic architecture and composition of ant ORs thus show convergence with the unrelated vertebrate ORs rather than the related fly ORs. This might be related to the greater gene numbers and/or potential similarities in gene regulation between ants and vertebrates as compared to flies.

Funder

National Institutes of Health

Klingenstein-Simons Fellowship

Pew Biomedical Scholar

HHMI Faculty Scholar

NIH National Research Service Award Training

Publisher

Cold Spring Harbor Laboratory

Subject

Genetics(clinical),Genetics

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3