Modeling dynamic allocation of effort in a sequential task using discounting models

Author:

Darío Cuevas Rivera,Alexander Strobel,Thomas Goschke,Kiebel Stefan J.

Abstract

Most rewards in our lives require effort to obtain them. It is known that effort is seen by humans as carrying an intrinsic disutility which devalues the obtainable reward. Established models for effort discounting account for this by using participant-specific discounting parameters inferred from experiments. These parameters offer only a static glance into the bigger picture of effort exertion. The mechanism underlying the dynamic changes in a participant’s willingness to exert effort is still unclear and an active topic of research. Here, we modeled dynamic effort exertion as a consequence of effort- and probability-discounting mechanisms during goal reaching, sequential behavior. To do this, we developed a novel sequential decision-making task in which participants make binary choices to reach a minimum number of points. Importantly, the time points and circumstances of effort allocation are decided by participants according to their own preferences and not imposed directly by the task. Using the computational model to analyze participants’ choices, we show that the dynamics of effort exertion arise from a combination of changing task needs and forward planning. In other words, the interplay between a participant’s inferred discounting parameters is sufficient to explain the dynamic allocation of effort during goal reaching. Using formal model comparison, we also infer the forward-planning strategy used by participants. The model allows us to characterize a participant’s effort exertion in terms of only a few parameters. Moreover, the model can be adapted to a number of tasks used in establishing the neural underpinnings of forward-planning behavior and meta-control, allowing for the characterization of behavior in terms of model parameters.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3