Conservation and Variations of Bimodal HoxD Gene Regulation During Tetrapod Limb Development

Author:

Yakushiji-Kaminatsui NayutaORCID,Lopez-Delisle LucilleORCID,Bolt Christopher ChaseORCID,Andrey GuillaumeORCID,Beccari Leonardo,Duboule DenisORCID

Abstract

ABSTRACTIn all tetrapods examined thus far, the development and patterning of limbs require the activation of gene members of the HoxD cluster. In mammals, they are controlled by a complex bimodal regulation, which controls first the proximal patterning, then the distal structure, allowing at the same time the formation of the wrist and ankle articulations. We analyzed the implementation of this regulatory mechanism in chicken, i.e. in an animal where large morphological differences exist between fore-and hindlimbs. We report that while this bimodal regulation is globally conserved between mammals and avian, some important modifications evolved at least between these two model systems, in particular regarding the activity of specific enhancers, the width of the TAD boundary separating the two regulations and the comparison between the forelimb versus hindlimb regulatory controls. Some aspects of these regulations seem to be more conserved between chick and bats than with the mouse situation, which may relate to the extent to which forelimbs and hindlimbs of these various animals differ in their functions.AUTHOR SUMMARYThe morphologies of limbs largely vary either amongst tetrapod species, or even between the fore-and hindlimbs of the same animal species. In order to try and evaluate whether variations in the complex regulation of Hoxd genes during limb development may contribute to these differences, we compared their transcriptional controls during both fore-and hindlimb buds development in either the mouse, or the chicken embryos. We combined transcriptome analyses with 3D genome conformation, histone modification profiles and mouse genetics and found that the regulatory mechanism underlying Hoxd gene expression was highly conserved in all contexts, though with some clear differences. For instance, we observed a variation in the TAD boundary interval between the mouse and the chick, as well as differences in the activity of a conserved enhancer element (CS93) situated within the T-DOM regulatory landscape. In contrast to the mouse, the chicken enhancer indeed displayed a stronger activity in fore-than in hindlimb buds, coinciding with the observed striking differences in the mRNA levels. Altogether, differences in both the timing and duration of TAD activities and in the width of their boundary may parallel the important decrease in Hoxd gene transcription in chick hindlimb versus forelimb buds. These differences may also account for the slightly distinct regulatory strategies implemented by mammals and birds at this locus, potentially leading to substantial morphological variations.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3