Abstract
AbstractThis paper presents the development and evaluation of different versions of Neuro-Fuzzy model for prediction of spike discharge patterns. We aim to predict the spike discharge variation using first spike latency and frequency-following interval. In order to study the spike discharge dynamics, we analyzed the Cerebral Cortex data of the cat from [29]. Adaptive Neuro-Fuzzy Inference Systems (ANFIS), Wang and Mendel (WM), Dynamic evolving neural-fuzzy inference system (DENFIS), Hybrid neural Fuzzy Inference System (HyFIS), genetic for lateral tuning and rule selection of linguistic fuzzy system (GFS.LT.RS) and subtractive clustering and fuzzy c-means (SBC) algorithms are applied for data. Among these algorithms, ANFIS and GFS.LT.RS models have better performance. On the other hand, ANFIS and GFS.LT.RS algorithms can be used to predict the spike discharge dynamics as a function of first spike latency and frequency with a higher accuracy compared to other algorithms.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献