DNA Topology in Chromatin is Defined by Nucleosome Spacing

Author:

Nikitina Tatiana,Norouzi Davood,Grigoryev Sergei A.,Zhurkin Victor B.

Abstract

ABSTRACTIn eukaryotic chromatin, DNA makes about 1.7 left superhelical turns around an octamer of core histones implying that formation of nucleosomes would alter the overall topology of DNA by a comparable difference of the DNA linking number (ΔLk) per nucleosome. However, earlier experiments have documented a significantly (about 50%) lower absolute value |ΔLk| than expected from the nucleosome geometry. Recently, using computer modeling, we have predicted two families of energetically stable conformations of the arrays with precisely positioned nucleosomes, one with an integer number of DNA turns in the linker DNA {L = 10n} and the other with extra five base pairs in the linker {L = 10n + 5}, to be topologically different. Here, using arrays of precisely positioned clone 601 nucleosomes, topological electrophoretic assays, and electron microscopy we experimentally tested these predictions. First, for small 12-mer nucleosome circular arrays we observed that dLk per nucleosome changes from −1.4 to −0.9 for the linkers {L = 10n} and {L = 10n + 5}, respectively. Second, for larger hybrid arrays containing a mixture of positioned and non-positioned nucleosomes we found that changing the DNA linker length within the positioned arrays was sufficient to significantly alter the overall DNA topology fully consistent with our prediction. The observed topological polymorphism of the circular nucleosome arrays provides a simple explanation for the DNA topology in native chromatin with variable DNA linker length. Furthermore, our results may reflect a more general tendency of chromosomal domains containing active or repressed genes to acquire different nucleosome spacing to retain topologically distinct higher-order structures.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3