cDeepbind: A context sensitive deep learning model of RNA-protein binding

Author:

Gandhi Shreshth,Lee Leo J.,Delong Andrew,Duvenaud David,Frey Brendan J.

Abstract

AbstractMotivationDetermining RNA binding protein(RBP) binding specificity is crucial for understanding many cellular processes and genetic disorders. RBP binding is known to be affected by both the sequence and structure of RNAs. Deep learning can be used to learn generalizable representations of raw data and has improved state of the art in several fields such as image classification, speech recognition and even genomics. Previous work on RBP binding has either used shallow models that combine sequence and structure or deep models that use only the sequence. Here we combine both abilities by augmenting and refining the original Deepbind architecture to capture structural information and obtain significantly better performance.ResultsWe propose two deep architectures, one a lightweight convolutional network for transcriptome wide inference and another a Long Short-Term Memory(LSTM) network that is suitable for small batches of data. We incorporate computationally predicted secondary structure features as input to our models and show its effectiveness in boosting prediction performance. Our models achieved significantly higher correlations on held out in-vitro test data compared to previous approaches, and generalise well to in-vivo CLIP-SEQ data achieving higher median AUCs than other approaches. We analysed the output from our model for VTS1 and CPO and provided intuition into its working. Our models confirmed known secondary structure preferences for some proteins as well as found new ones where secondary structure might play a role. We also demonstrated the strengths of our model compared to other approaches such as the ability to combine information from long distances along the input.AvailabilitySoftware and models are available at https://github.com/shreshthgandhi/cDeepbindContactljlee@psi.toronto.edu, frey@psi.toronto.edu

Publisher

Cold Spring Harbor Laboratory

Reference40 articles.

1. Abadi, M. , Agarwal, A. , Barham, P. , Brevdo, E. , Chen, Z. , Citro, C. , Corrado, G. S. , Davis, A. , Dean, J. , Devin, M. , et al. (2016). Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467.

2. Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning

3. Sequence-specific recognition of rna hairpins by the sam domain of vts1p;Nature structural & molecular biology,2006

4. 10.1162/153244303322533223

5. Characterization of multimeric complexes formed by the human PTB1 protein on RNA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3