Probabilistic associative learning suffices for learning the temporal structure of multiple sequences

Author:

Martinez Ramon H.ORCID,Lansner AndersORCID,Herman PawelORCID

Abstract

AbstractMany brain phenomena both at the cognitive and behavior level exhibit remarkable sequential characteristics. While the mechanisms behind the sequential nature of the underlying brain activity are likely multifarious and multi-scale, in this work we attempt to characterize to what degree some of this properties can be explained as a consequence of simple associative learning. To this end, we employ a parsimonious firing-rate attractor network equipped with the Hebbian-like Bayesian Confidence Propagating Neural Network (BCPNN) learning rule relying on synaptic traces with asymmetric temporal characteristics. The proposed network model is able to encode and reproduce temporal aspects of the input, and offers internal control of the recall dynamics by gain modulation. We provide an analytical characterisation of the relationship between the structure of the weight matrix, the dynamical network parameters and the temporal aspects of sequence recall. We also present a computational study of the performance of the system under the effects of noise for an extensive region of the parameter space. Finally, we show how the inclusion of modularity in our network structure facilitates the learning and recall of multiple overlapping sequences even in a noisy regime.

Publisher

Cold Spring Harbor Laboratory

Reference88 articles.

1. Functional Significance of Long-Term Potentiation for Sequence Learning and Prediction

2. Cortical activity flips among quasi-stationary states.

3. The Hippocampus and Disambiguation of Overlapping Sequences

4. Learning patterns and pattern sequences by self-organizing nets of threshold elements;IEEE Transactions on Computers,1972

5. Amit, D. J. (1992). Modeling brain function: The world of attractor neural networks. Cambridge university press.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sequence Disambiguation with Synaptic Traces in Associative Neural Networks;Artificial Neural Networks and Machine Learning – ICANN 2019: Theoretical Neural Computation;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3