The bacterial microbiota of a parasitic plant and its host

Author:

Fitzpatrick Connor R.ORCID,Schneider Adam C.ORCID

Abstract

AbstractHow plant-associated microbiota are shaped by, and potentially contribute to the unique ecology and heterotrophic life history of parasitic plants is relatively unknown. Here, we investigate the leaf and root bacterial communities associated with the root holoparasite Orobanche hederae and its host plant Hedera spp. We sequenced the V4 region of the 16S rRNA gene from DNA extracted from leaf and root samples of naturally growing populations of Orobanche and infected and uninfected Hedera. Root bacteria inhabiting Orobanche were less diverse, had fewer co-associations, and displayed increased compositional similarity to leaf bacteria relative to Hedera. Overall, Orobanche bacteria exhibited significant congruency with Hedera root bacteria across sites, but not the surrounding soil. Infection had localized and systemic effects on Hedera bacteria, which included effects on the abundance of individual taxa and root network properties. Collectively, our results indicate that the parasitic plant microbiome is derived but distinct from host plant microbiota, exhibits increased homogenization between shoot and root tissues, and displays far fewer co-associations among individual bacterial members. Host plant infection is accompanied by modest changes of associated microbiota at both local and systemic scales compared with uninfected individuals. Our results provide insight into the assembly and function of plant microbiota.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3