A pair of esterases from a commensal gut bacterium remove acetylations from all positions on complex β-mannans

Author:

Michalak Leszek,La Rosa Sabina LeantiORCID,Leivers Shaun AllanORCID,Lindstad Lars Jordhøy,Kjendseth Åsmund RøhrORCID,Aachmann Finn LillelundORCID,Westereng BjørgeORCID

Abstract

Abstractβ-Mannans and xylans are important components of the plant cell wall and they are acetylated to be protected from degradation by glycoside hydrolases. β-Mannans are widely present in human and animal diets as fiber from leguminous plants and as thickeners and stabilizers in processed foods. There are many fully characterized acetylxylan esterases (AcXEs), however, the enzymes deacetylating mannans are less understood. Here we present two carbohydrate esterases, RiCE2 and RiCEX, from the Firmicute Roseburia intestinalis, which together deacetylate complex galactoglucomannan (GGM). The 3D-structure of RiCEX with a mannopentaose in the active site shows that the CBM35 domain of RiCEX forms a confined complex, where the axially oriented C2-hydroxyl of a mannose residue points towards the Ser41 of the catalytic triad. Cavities on the RiCEX surface may accept galactosylations at the C6 positions of mannose adjacent to the mannose residue being deacetylated (subsite −1 and +1). In depth characterization of the two enzymes using time-resolved NMR, HPLC and mass spectrometry demonstrates that they work in a complementary manner. RiCEX exclusively removes the axially oriented 2-O-acetylations on any mannose residue in an oligosaccharide, including double acetylated mannoses, while the RiCE2 is active on 3-O-, 4-O- and 6-O-acetylations. Activity of RiCE2 is dependent on RiCEX removing 2-O-acetylations from double acetylated mannose. Furthermore, transacetylation of oligosaccharides with the 2-O specific RiCEX provided new insight to how temperature and pH affects acetyl migration on mannooligosaccharides.Significance statementAcetylations are an important feature of hemicellulose, altering the physical properties of the plant cell wall, and limiting enzyme accessibility. Removal of acetyl groups from beta-mannan is a key step towards efficient utilization of mannans as a carbon source for gut microbiota and in biorefineries. We present detailed insight into mannan deacetylation by two highly substrate-specific acetyl-mannan esterases (AcMEs) from a prevalent gut commensal Firmicute, which cooperatively deacetylate complex galactoglucomannan. The 3D structure of RiCEX with mannopentaose in the active site has a unique two-domain architecture including a CBM35 and an SGNH superfamily hydrolytic domain. Discovery of mannan specific esterases improves the understanding of an important step in dietary fiber utilization by gut commensal Firmicutes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3