Synchrony and complexity in state-related EEG networks: an application of spectral graph theory

Author:

Ghaderi Amir Hossein,Baltaretu Bianca R.ORCID,Andevari Masood Nemati,Bharmauria VishalORCID,Balci Fuat

Abstract

AbstractTo characterize differences between different state-related brain networks, statistical graph theory approaches have been employed to identify informative, topological properties. However, dynamical properties have been studied little in this regard. Our goal here was to introduce spectral graph theory as a reliable approach to determine dynamic properties of functional brain networks and to find how topological versus dynamical features differentiate between such networks. To this goal, 45 participants performed no task with eyes open (EO) or closed (EC) while electroencephalography data were recorded. These data were used to create weighted adjacency matrices for each condition (rest state EO and rest state EC). Then, using the spectral graph theory approach and Shannon entropy, we identified dynamical properties for weighted graphs, and we compared these features with topological aspects of graphs. The results showed that spectral graph theory can distinguish different state-dependent neural networks with different synchronies. On the other hand, correlation analysis indicated that although dynamical and topological properties of random networks are completely independent, these network features can be related in the case of brain generated graphs. In conclusion, the spectral graph theory approach can be used to make inferences about various state-related brain networks, for healthy and clinical populations.Author SummeryBy considering functional communications across different brain regions, a complex network is achieved that is known as functional brain network. Topologically, this network is constructed by different nodes (activity of brain regions or signals over recording electrodes) and different edges (similarity, correlation or phase difference between nodes). Paths, clusters, hubs, and centrality of nodes are examples of topological properties of these networks. However, synchrony and stability of functional brain networks can not be revealed by consideration of topological properties. Alternatively, spectral graph theory (SGT) can demonstrate the dynamic, synchrony and stability of graphs. But this approach has been studied little in brain network analysis. Here, we employed SGT, as well as topological methods, to investigate which approaches are more reliable to find differences between distinct state-related brain networks. On the other hand, we investigated correlations between topology and dynamic in different type of networks (brain generated and random networks). We found that SGT measures can clearly distinguish between distinct state-related brain networks and it can reveal synchrony and complexity of these networks. Also, results show that although dynamic and topology of random-generated graph are completely independent, these properties exhibit several correlations in the case of functional brain networks.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3