Author:
Wolpaw Jonathan R.,Chen Xiang Yang
Abstract
Operant conditioning of the H-reflex, the electrical analog of the spinal stretch reflex, is a simple model of skill acquisition and involves plasticity in the spinal cord. Previous work showed that the cerebellum is essential for down-conditioning the H-reflex. This study asks whether the cerebellum is also essential for maintaining down-conditioning. After rats decreased the soleus H-reflex over 50 d in response to the down-conditioning protocol, the cerebellar output nuclei dentate and interpositus (DIN) were ablated, and down-conditioning continued for 50–100 more days. In naive (i.e., unconditioned) rats, DIN ablation itself has no significant long-term effect on H-reflex size. During down-conditioning prior to DIN ablation, eight Sprague-Dawley rats decreased the H-reflex to 57% (±4 SEM) of control. It rose after ablation, stabilizing within 2 d at about 75% and remaining there until ∼40 d after ablation. It then rose to ∼130%, where it remained through the end of study 100 d after ablation. Thus, DIN ablation in down-conditioned rats caused an immediate increase and a delayed increase in the H-reflex. The final result was an H-reflex significantly larger than that prior to down-conditioning. Combined with previous work, these remarkable results suggest that the spinal cord plasticity directly responsible for down-conditioning, which survives only 5–10 d on its own, is maintained by supraspinal plasticity that survives ∼40 d after loss of cerebellar output. Thus, H-reflex conditioning seems to depend on a hierarchy of brain and spinal cord plasticity to which the cerebellum makes an essential contribution.
Publisher
Cold Spring Harbor Laboratory
Subject
Cellular and Molecular Neuroscience,Cognitive Neuroscience,Neuropsychology and Physiological Psychology
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献