A theory for how the antigen presentation profile influences the timing of T-cell detection

Author:

Carignano AlbertoORCID,Dalchau NeilORCID

Abstract

T-cells are activated when their receptor molecules recognize complexes of MHC proteins bound to peptides on the surface of neighbouring cells. Each T-cell expresses one variant of many possible receptor molecules, which are generated through a partially random process that culminates in approximately 107 possible T-cell receptors. As the peptide sequence bound to an MHC molecule is also highly variable, the optimal strategy of an antigen-presenting cell for displaying peptide-MHC complexes is not obvious. A natural compromise arises between aggressive peptide filtering, displaying a few peptides with high stability MHC binding in high abundance and regularity, and promiscuous peptide binding, which can result in more diverse peptides being presented, but in lower abundance. To study this compromise, we have combined a model of MHC class I peptide filtering with a simple probabilistic description of the interactions between antigen presenting cells (APCs) and cytotoxic Tcells (CTLs). By asking how long it takes, on average, for an APC to encounter a circulating CTL that recognises one of the peptides being presented by its MHC molecules, we found that there often exists an optimal degree of peptide filtering, which minimises this expected time until first encounter. The optimal degree of filtering is often in the range of values that the chaperone molecule tapasin confers on peptide selection, but varies between MHC class I molecules that have different peptide binding properties. Our model-based analysis therefore helps to understand how variations in the antigen presentation profile might be exploited for vaccine design or immunotherapies.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3