Parallel holographic illumination enables sub-millisecond two-photon optogenetic activation in mouse visual cortex in vivo

Author:

Chen I-WenORCID,Ronzitti Emiliano,Lee Brian R.,Daigle Tanya L.,Zeng Hongkui,Papagiakoumou EiriniORCID,Emiliani ValentinaORCID

Abstract

AbstractSelective control of action potential generation in individual cells from a neuronal ensemble is desirable for dissecting circuit mechanisms underlying perception and behavior. Here, by using two-photon (2P) temporally focused computer-generated holography (TF-CGH), we demonstrate optical manipulation of neuronal excitability at the supragranular layers of anesthetized mouse visual cortex. Utilizing amplified laser-pulses delivered via a localized holographic spot, our optical system achieves suprathreshold activation by exciting either of the three optogenetic actuators, ReaChR, CoChR or ChrimsonR, with brief illumination (≤ 10 ms) at moderate excitation power ((in average ≤ 0.2 mW/µm2 corresponding to ≤ 25 mW/cell). Using 2P-guided whole-cell or cell-attached recordings in positive neurons expressing respective opsin in vivo, we find that parallel illumination induces spikes of millisecond temporal resolution and sub-millisecond precision, which are preserved upon repetitive illuminations up to tens of Hz. Holographic stimulation thus enables temporally precise optogenetic activation independently of opsin’s channel kinetics. Furthermore, we demonstrate that parallel optogenetic activation can be combined with functional imaging for all-optical control of a neuronal sub-population that co-expresses the photosensitive opsin ReaChR and the calcium indicator GCaMP6s. Parallel optical control of neuronal activity with cellular resolution and millisecond temporal precision should be advantageous for investigating neuronal connections and further yielding causal links between connectivity, microcircuit dynamics, and brain functions.Significance statementRecent development of optogenetics allows probing the neuronal microcircuit with light by optically actuating genetically-encoded light-sensitive opsins expressed in the target cells. Here, we apply holographic light shaping and temporal focusing to simultaneously deliver axially-confined holographic patterns to opsin-positive cells situated in the living mouse cortex. Parallel illumination efficiently induces action potentials with high temporal resolution and precision for three opsins of different kinetics. We demonstrated all-optical experiments by extending the parallel optogenetic activation at low intensity to multiple neurons and concurrently monitoring their calcium dynamics. These results demonstrate fast and temporally precise in vivo control of a neuronal sub-population, opening new opportunities to reveal circuit mechanisms underlying brain functions.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3