Natural selection on plasticity of thermal traits in a highly seasonal environment

Author:

Bacigalupe Leonardo D.ORCID,Gaitan-Espitia Juan D.ORCID,Barria Aura M.,Gonzalez-Mendez Avia,Ruiz-Aravena Manuel,Trinder Mark,Sinervo BarryORCID

Abstract

AbstractThis preprint has been reviewed and recommended by Peer Community In Evolutionary Biology (http://dx.doi.org/10.24072/pci.evolbiol.100048). For ectothermic species with broad geographical distributions, latitudinal/altitudinal variation in environmental temperatures (averages and extremes) are expected to shape the evolution of physiological tolerances and the acclimation capacity (i.e., degree of phenotypic plasticity) of natural populations. This can create geographical gradients of selection in which environments with greater thermal variability (e.g., seasonality) tend to favour individuals that maximize performance across a broader range of temperatures compared to more stable environments. Although thermal acclimation capacity plays a fundamental role in this context, it is unknown whether natural selection targets this trait in natural populations. Here we addressed such an important gap in our knowledge by measuring survival, through mark recapture integrated into an information-theoretic approach, as a function of the plasticity of critical thermal limits for activity, behavioural thermal preference and the thermal sensitivity of metabolism in the northernmost population of the four-eyed frogPleurodema thaul. Overall, our results indicate that thermal acclimation in this population is not being targeted by directional selection, although there might be signals of selection on individual traits. According to the most supported models, survival decreased in individuals with less tolerance to cold when cold-acclimated (probably because daily low extremes are frequent during the cooler periods of the year) and increased with body size. However, in both cases, the directional selection estimates were non-significant.

Publisher

Cold Spring Harbor Laboratory

Reference49 articles.

1. Angilletta, M. J. 2009. Thermal Adaptation: a theoretical and empirical synthesis. Oxford, UK: Oxford University press.

2. NATURAL SELECTION REDUCES ENERGY METABOLISM IN THE GARDEN SNAIL,HELIX ASPERSA(CORNU ASPERSUM)

3. Balancing selection on size: Effects on the incidence of an alternative reproductive tactic;Evol. Ecol. Res,2005

4. Design, limitations and sustained metabolic rate: lessons from small mammals;J. Exp. Biol,2002

5. Intraspecific geographic variation in thermal limits and acclimatory capacity in a wide distributed endemic frog

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3