The structure of the genetic code as an optimal graph clustering problem

Author:

Błażej Paweł,Kowalski Dariusz R.,Mackiewicz Dorota,Wnetrzak Małgorzata,Aloqalaa Daniyah A.,Mackiewicz Paweł

Abstract

AbstractThe standard genetic code (SGC) is the set of rules by which genetic information is translated into proteins, from codons, i.e. triplets of nucleotides, to amino acids. The questions about the origin and the main factor responsible for the present structure of the code are still under a hot debate. Various methodologies have been used to study the features of the code and assess the level of its potential optimality. Here, we introduced a new general approach to evaluate the quality of the genetic code structure. This methodology comes from graph theory and allows us to describe new properties of the genetic code in terms of conductance. This parameter measures the robustness of codon groups against the potential changes in translation of the protein-coding sequences generated by single nucleotide substitutions. We described the genetic code as a partition of an undirected and unweighted graph, which makes the model general and universal. Using this approach, we showed that the structure of the genetic code is a solution to the graph clustering problem. We presented and discussed the structure of the codes that are optimal according to the conductance. Despite the fact that the standard genetic code is far from being optimal according to the conductance, its structure is characterised by many codon groups reaching the minimum conductance for their size. The SGC represents most likely a local minimum in terms of errors occurring in protein-coding sequences and their translation.

Publisher

Cold Spring Harbor Laboratory

Reference48 articles.

1. On Error Minimization in a Sequential Origin of the Standard Genetic Code

2. On the Evolution of Redundancy in Genetic Codes

3. Beineke and Wilson, 2005. Beineke, L. W. and Wilson, R. J. (2005). Topics in algebraic graph theory. Cambridge University Press, Cambridge, UK; New York.

4. Edge-isoperimetric problems for cartesian powers of regular graphs;Bezrukov and Elsässer, 2003;Theor. Comput. Sci,2003

5. Optimization of amino acid replacement costs by mutational pressure in bacterial genomes;B laz˙ej et al., 2017;Scientific Reports,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3