Author:
Kardon Julia R.,Moroco Jamie A.,Engen John R.,Baker Tania A.
Abstract
ABSTRACTMitochondria can control the activity, quality, and lifetime of their proteins with their autonomous system of chaperones, but the signals that direct substrate-chaperone interaction and outcome are poorly understood. We previously discovered that the mitochondrial AAA+ protein unfoldase ClpX (mtClpX) activates the initiating enzyme for heme biosynthesis, 5-aminolevulinic acid synthase (ALAS), by promoting incorporation of cofactor. Here, we ask how unfolding by mtClpX directs activation. We identified sequence and structural features in ALAS that position mtClpX and provide a grip for acting on ALAS. Observation of ALAS undergoing remodeling by mtClpX revealed that unfolding was limited to a subdomain extending from the mtClpX-binding site to the active site. Unfolding along this path was required for mtClpX to gate cofactor access to the ALAS active site. This targeted unfolding contrasts with the global unfolding canonically executed by ClpX homologs and suggests how substrate-chaperone interactions can direct the outcome of remodeling.
Publisher
Cold Spring Harbor Laboratory