N-linked glycosylation of the antagonist Short gastrulation increases the functional complexity of BMP signals

Author:

Negreiros E.,Herszterg S.ORCID,Hwa K.ORCID,Câmara A.,Dias W.B.ORCID,Carneiro K.ORCID,Bier E.ORCID,Todeschini A.ORCID,Araujo H.ORCID

Abstract

AbstractDisorders of N-linked glycosylation are increasingly reported in the literature. However, targets responsible for the associated developmental and physiological defects are largely unknown. Bone Morphogenetic Proteins (BMPs) act as highly dynamic complexes to regulate several functions during development. The range and strength of BMP activity depend on interactions with glycosylated protein complexes in the extracellular milieu. Here we investigate the role of glycosylation for the function of the conserved extracellular BMP antagonist Short gastrulation (Sog). We identify conserved N-glycosylated sites and describe the effect of mutating these residues on BMP pathway activity in Drosophila. Functional analysis reveals that loss of individual Sog glycosylation sites enhances BMP antagonism and/or increases the spatial range of Sog effects in the tissue. Mechanistically, we provide evidence that N-terminal and stem glycosylation controls extracellular Sog levels and distribution. The identification of similar residues in vertebrate Chordin proteins suggests that N-glycosylation may be an evolutionarily conserved process that adds complexity to the regulation of BMP activity.Summary StatementN-glycosylation restricts the function of Short gastrulation during Drosophila development by controlling the amount of extracellular protein. This adds another layer of complexity to regulation of Bone Morphogenetic Protein signals.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3