Predicting improved protein conformations with a temporal deep recurrent neural network

Author:

Pfeiffenberger Erik,Bates Paul A.

Abstract

AbstractAccurate protein structure prediction from amino acid sequence is still an unsolved problem. The most reliable methods centre on template based modelling. However, the accuracy of these models entirely depends on the availability of experimentally resolved homologous template structures. In order to generate more accurate models, extensive physics based molecular dynamics (MD) refinement simulations are performed to sample many different conformations to find improved conformational states. In this study, we propose a deep recurrent network model, called DeepTrajectory, that is able to identify these improved conformational states, with high precision, from a variety of different MD based sampling protocols. The proposed model learns the temporal patterns of features computed from the MD trajectory data in order to classify whether each recorded simulation snapshot is an improved conformational state, decreased conformational state or a none perceivable change in state with respect to the starting conformation. The model is trained and tested on 904 trajectories from 42 different protein systems with a cumulative number of more than 1.7 million snapshots. We show that our model outperforms other state of the art machine-learning algorithms that do not consider temporal dependencies. To our knowledge, DeepTrajectory is the first implementation of a time-dependent deep-learning protocol that is re-trainable and able to adapt to any new MD based sampling procedure, thereby demonstrating how a neural network can be used to learn the latter part of the protein folding funnel.

Publisher

Cold Spring Harbor Laboratory

Reference56 articles.

1. Protein Structure Prediction and Structural Genomics

2. Moult, J. , Fidelis, K. , Kryshtafovych, A. , Schwede, T. & Tramontano, A. Critical assessment of methods of protein structure prediction; Progress and new directions in round

3. XIProteins: Structure, Function and Bioinformatics 84, 4–14 (2016).

4. Assessment of template-based protein structure predictions in CASP10Proteins: Structure;Function and Bioinfor-matics,2014

5. The Phyre2 web portal for protein modelling, predic-tion, and analysis;Nature Protocols,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3