Ultra-thin fluorocarbon foils optimise multiscale imaging of three-dimensional native and optically cleared specimens

Author:

Hötte Katharina,Koch Michael,Hof Lotta,Tuppi Marcel,Moreth Till,Stelzer Ernst H. K.,Pampaloni FrancescoORCID

Abstract

AbstractIn three-dimensional light microscopy, the heterogeneity of the optical density in a specimen ultimately limits the achievable penetration depth and hence the three-dimensional resolution. The most direct approach to reduce aberrations, improve the contrast, and achieve an optimal resolution is minimizing the impact of changes of the refractive index along an optical path. Many light sheet fluorescence microscopes operate with a large chamber that contains an aqueous immersion medium and an inner specimen holder that contains the specimen embedded in a possibly entirely different non-aqueous medium. In order to minimize the impact of the specimen holder on the optical quality, we use multi-facetted cuvettes fabricated with vacuum-formed ultra-thin fluorocarbon (FEP) foils The ultra-thin FEP-foil cuvettes have a wall thickness of about 12 µm. They are resilient to fluidic exchanges, durable, mechanically stable and yet flexible.We confirm the improved imaging performance of ultra-thin FEP-foil cuvettes with excellent quality images of whole organs, thick tissue sections and dense organoid clusters. The cuvettes outperform many other sample-mounting techniques in terms of full separation of the specimen from the immersion medium, compatibility with aqueous and organic clearing media, quick specimen mounting without hydrogel embedding, as well as their applicability for multiple-view imaging and automated segmentation. Additionally, we show that ultra-thin FEP foil cuvettes are suitable for seeding and growing organoids over a time period of at least ten days. The ultra-thin cuvettes allow the fixation and staining of the specimens inside the holder, preserving the delicate morphology of e.g. fragile, mono-layered three-dimensional organoids.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3