Complement-dependent synapse loss and microgliosis in a mouse model of multiple sclerosis

Author:

Hammond Jennetta W.ORCID,Bellizzi Matthew J.,Ware Caroline,Qiu Wen Q.,Saminathan Priyanka,Li Herman,Luo Shaopeiwen,Li Yuanhao,Gelbard Harris A.ORCID

Abstract

AbstractMultiple sclerosis (MS) is an inflammatory, neurodegenerative disease of the CNS characterized by both grey and white matter injury. Microglial activation and a reduction in synaptic density are key features of grey matter pathology that can be modeled with experimental autoimmune encephalomyelitis (EAE). Complement deposition combined with microglial engulfment has been shown during normal development and in disease as a mechanism for pruning synapses. We tested whether there is excess complement production in the EAE hippocampus and whether complement-dependent synapse loss is a source of degeneration in EAE using C1qa and C3 knockout mice. We found that C1q and C3 protein levels were elevated in EAE mice. Genetic loss of C1qa provided a small degree of protection from EAE-induced decreases in synaptic density. However, C1qa knockout EAE mice had similar levels of microglial activation and identical clinical scores as WT EAE mice. C3 knockout mice were largely protected from EAE-induced synapse loss and microglial activation, results that correlated with a reduction in the EAE clinical score. Thus, pathologic expression and activation of the early complement pathway drives a portion of the synapse elimination observed in the EAE grey matter.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3