Abstract
AbstractMany animals exhibit morning and evening peaks of locomotor behavior. In Drosophila, previous studies identified two corresponding circadian neural oscillators: M (morning) cells which exhixbit a morning neural activity peak, and E (evening) cells which exhibit a corresponding evening peak of activity. Yet we know little of how these distinct circadian oscillators produce specific outputs that regulate pre-motor circuits to precisely control behavioral episodes. Here we show that the Ring Neurons of the Ellipsoid Body (EB-RNs), a defined pre-motor center, display a spontaneous in vivo neural activity rhythm, with peaks in the morning and in the evening. The two EB-RN activity peaks coincide with the major bouts of locomotor activity and result from independent activation by M and E cells, respectively. Further, M and E cells regulate EB-RNs via two identified dopaminergic neurons PPM3-EB, which project to the EB and which are normally co-active with EB-RNs. Blocking the dopaminergic modulation onto EB-RNs prevents the daily two-peak pattern of neural activity in the EB-RN and greatly impairs circadian locomotor activity. These in vivo findings establish the fundamental elements of a circadian neuronal output pathway: distinct circadian oscillators independently drive a common pre-motor center through the agency of specific dopaminergic interneurons.
Publisher
Cold Spring Harbor Laboratory